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Introduction

 |oT paradigm is applied to many safety-critical systems

« factory management
personal body sensors in healthcare

« surveillance systems in nuclear power plants

« early warning systems for earthquakes
* efc.

* Necessity to insure reliability and availability of the

loT system components
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 loT systems reliability
« Quality decay over time
 Metrics for reliability quantification

* mean time to anomaly, anomaly rate, probability of
anomaly

* Focus: Anomaly prediction
« cyclic and random anomalies on sensor components

B&Cl‘ground Reliability Metrics
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point.com/softwar
e-engineering-
software-
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(D] Device ID

« Smart environment monitoring

« 15 Long-Range devices « Sensor anomaly

. Multi-hop communication * Loss of sensitivity

L  Loss In accuracy
« Communication in cycles
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 How can we predict an accurate anomaly
Research time for the 10T sensors based on their

Question reliability metrics?
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Approach
Component-
level

mechanism

« Anomaly Prediction

 Reliability quantification mechanism
« Component quality over time

« Q-learning agent

 Estimate anomaly time
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» state,
* value of the probability of anomaly

HPPI‘O&C]’I e action,

Q-learning - amount of time to add to the previous anomaly time
Agent * time,y,
* Q-value

« quality of the state-action combination

8/12



| Beginning of cycle

Agent
chooses
time, g4

Approach

4 N R
Q-A_g e nt Time, egict < time gy + time,eviousanom || reward € time gt == timey 0, ?72:0;
training _ JE )

l End of cycle

9/12



Preliminary
Results
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 The estimation of the predicted time seemed
to follow the anomaly time for some devices

Discussions * There Is a need to better calibrate the way the
agent learn, for example, by changing the
Interaction between the reward and the action
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o Inthis research , we tried to solve the
anomaly prediction problem for loT
sensor components using Q-learning

Conclusion « Our approach produced contrasting results
depending on the sensor component
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