Preemptive Anomaly Prediction in IoT Components

Alhassan Boner Diallo, Hiroyuki Nakagawa, Tatsuhiro Tsuchiya

Graduate School of Information Science and Technology Osaka University Osaka, Japan

Content

- Introduction
- Background
- Case Study
 - DeltaIoT
- Research Question
- Approach
 - Reliability metrics quantification
 - Q-learning for time discovery
- Preliminary Results
- Discussions
- Conclusion

Introduction

- IoT paradigm is applied to many safety-critical systems
 - factory management
 - personal body sensors in healthcare
 - surveillance systems in nuclear power plants
 - early warning systems for earthquakes
 - etc.
- Necessity to insure reliability and availability of the IoT system components

Roy, Sandip, et al. "Chaotic map-based anonymous user authentication scheme with user biometrics and fuzzy extractor for crowdsourcing Internet of Things." *IEEE Internet of Things Journal* 5.4 (2017): 2884-2895.

Background

- IoT systems reliability
 - Quality decay over time
- Metrics for reliability quantification
 - mean time to anomaly, anomaly rate, probability of anomaly
- Focus: Anomaly prediction
 - cyclic and random anomalies on sensor components

Case Study: DeltaIoT

- Smart environment monitoring
- 15 Long-Range devices
 - Multi-hop communication
 - Communication in cycles
 - Cycle of 570s

- Sensor anomaly
 - Loss of sensitivity
 - Loss in accuracy

Research Question

• How can we predict an accurate anomaly time for the IoT sensors based on their reliability metrics?

Approach Componentlevel mechanism

- Anomaly Prediction
 - Reliability quantification mechanism
 - Component quality over time
 - Q-learning agent
 - Estimate anomaly time

Approach Q-learning Agent

- state_i
 - value of the probability of anomaly
- action_i
 - amount of time to add to the previous anomaly time
 - time_{add}
- Q-value
 - quality of the state-action combination

Preliminary Results

Anomaly Time — Predicted Time

Discussions

- The estimation of the predicted time seemed to follow the anomaly time for some devices
- There is a need to better calibrate the way the agent learn, for example, by changing the interaction between the reward and the action

Conclusion

- In this research , we tried to solve the anomaly prediction problem for IoT sensor components using Q-learning
- Our approach produced contrasting results depending on the sensor component